sábado, 29 de mayo de 2010

Teoría de propagación

La propagación se realiza cuando un rayo de luz ingresa al núcleo de la fibra óptica y dentro de él se producen sucesivas reflexiones en la superficie de separación núcleo – revestimiento.



La condición más importante para que la fibra óptica pueda confinar la luz en el núcleo y guiarla es:

n 1 > n 2

Para describir los mecanismos de propagación se usará la óptica geométrica. Se basa en que la luz se considera como rayos angostos, donde la reflexión ocurre en la frontera de dos materiales de índices de refracción diferentes.

En el vacío las ondas electromagnéticas se propagan con la velocidad de la luz 299.792.456 km/seg.

En el aire se puede aproximar a:

c = 300,000 km/seg.

Si se tiene un material con distinto índice de refracción al del aire, su velocidad será ligeramente distinta a la de la luz dependiente de n


donde:

c = es la velocidad de la luz (3.000.000.000 m/s) en el aire

v = es la velocidad de la luz en un material especifico.

n = índice de refracción

Cuando un rayo incide en la frontera entre dos medios con diferentes índices de refracción, el rayo incidente será refractado con distinto ángulo, según la ley de refracción de Snell,



n1= índice de refracción del material 1 (adimensional)

n2= índice de refracción del material 2 (adimensional)

θ1= es el ángulo de incidencia (grados)

θ2 = es el ángulo de refracción (grados)

v1 = velocidad en el material 1

v2 = velocidad en el material 2

La representación de la ley de Snell se muestra en la figura que se encuentra a continuación.




En la frontera, el haz incidente se refracta hacia la normal o lejos de ella, dependiendo si n1 es menor o mayor que n2.

Esto implica que si un rayo ingresa de un medio menos denso (índice refractivo más bajo) a otro más denso (índice refractivo mas alto) (n1<>
Ángulo crítico

Puesto que los rayos se alejan de la normal cuando entran en un medio menos denso, el ángulo de incidencia, denominado ángulo crítico, resulta cuando el rayo refractado forma un ángulo de 90º con la normal, (superficie de separación entre ambos medios). Si el ángulo de incidencia se hace mayor que el ángulo crítico, los rayos de luz serán totalmente reflejados.





Índices de refracción de varios materiales se indican en la siguiente tabla.




El ángulo crítico considerando el aire y el vidrio será:

Para el aire n2 =1

Vidrio n1 = 1.5

1.5 sen θ1 = 1

θ1 = 41.8º

Ejemplo

Si el medio 1 es vidrio y el medio 2 alcohol etílico. Para un ángulo de incidencia de 30°, determine el ángulo de refracción.

De la tabla

n1 (vidrio) = 1.5

n2 (alcohol etílico) = 1.36




Kevin M Contreras H
CI 18.255.631
CRF
http://www.textoscientificos.com/redes/fibraoptica/propagacion

Fibra Óptica

Es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el núcleo de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED.



Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio o cable. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagnéticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión.



Dentro de los componentes que se usan en la fibra óptica caben destacar los siguientes: los conectores, el tipo de emisor del haz de luz, los conversores de luz, etc.

Transmisor de energía óptica. Lleva un modulador para transformar la señal electrónica entrante a la frecuencia aceptada por la fuente luminosa, la cual convierte la señal electrónica (electrones) en una señal óptica (fotones) que se emite a través de la fibra óptica.

Detector de energía óptica. Normalmente es un fotodiodo que convierte la señal óptica recibida en electrones (es necesario también un amplificador para generar la señal)

Fibra Óptica. Su componente es el silicio y se conecta a la fuente luminosa y al detector de energía óptica. Dichas conexiones requieren una tecnología compleja.

Ventajas

  • Baja Atenuación: Las fibras ópticas son el medio físico con menor atenuación. Por lo tanto se pueden establecer enlaces directos sin repetidores, de 100 a 200 Km . con el consiguiente aumento de la fiabilidad y economía en los equipamientos.
  • Gran ancho de banda: La capacidad de transmisión es muy elevada, además pueden propagarse simultáneamente ondas ópticas de varias longitudes de onda que se traduce en un mayor rendimiento de los sistemas. De hecho 2 fibras ópticas serían capaces de transportar, todas las conversaciones telefónicas de un país, con equipos de transmisión capaces de manejar tal cantidad de información (entre 100 MHz/Km a 10 GHz/Km).
  • Peso y tamaño reducidos: El diámetro de una fibra óptica es similar al de un cabello humano. Un cable de 64 fibras ópticas, tiene un diámetro total de 15 a 20 mm . y un peso medio de 250 Kg/km. Si comparamos estos valores con los de un cable de 900 pares calibre 0.4 (peso 4,000 Kg/Km y diámetro 40 a 50 mm ) se observan ventajas de facilidad y costo de instalación, siendo ventajoso su uso en sistemas de ductos congestionados, cuartos de computadoras o el interior de aviones.
  • Gran flexibilidad y recursos disponibles: Los cables de fibra óptica se pueden construir totalmente con materiales dieléctricos, la materia prima utilizada en la fabricación es el dióxido de silicio (Si0 2 ) que es uno de los recursos más abundantes en la superficie terrestre.
  • Aislamiento eléctrico entre terminales: Al no existir componentes metálicos (conductores de electricidad) no se producen inducciones de corriente en el cable, por tanto pueden ser instalados en lugares donde existen peligros de cortes eléctricos.
  • Ausencia de radiación emitida: Las fibras ópticas transmiten luz y no emiten radiaciones electromagnéticas que puedan interferir con equipos electrónicos, tampoco se ve afectada por radiaciones emitidas por otros medios, por lo tanto constituyen el medio más seguro para transmitir información de muy alta calidad sin degradación.
  • Costo y mantenimiento: El costo de los cables de fibra óptica y la tecnología asociada con su instalación ha caído drásticamente en los últimos años. Hoy en día, el costo de construcción de una planta de fibra óptica es comparable con una planta de cobre. Además, los costos de mantenimiento de una planta de fibra óptica son muy inferiores a los de una planta de cobre. Sin embargo si el requerimiento de capacidad de información es bajo la fibra óptica puede ser de mayor costo. Las señales se pueden transmitir a través de zonas eléctricamente ruidosas con muy bajo índice de error y sin interferencias eléctricas.Las características de transmisión son prácticamente inalterables debido a los cambios de temperatura, siendo innecesarios y/o simplificadas la ecualización y compensación de las variaciones en tales propiedades. Se mantiene estable entre -40 y 200 ºC .Por tanto dependiendo de los requerimientos de comunicación la fibra óptica puede constituir el mejor sistema.

Desventajas de la fibra óptica
  • El costo de la fibra sólo se justifica cuando su gran capacidad de ancho de banda y baja atenuación son requeridos. Para bajo ancho de banda puede ser una solución mucho más costosa que el conductor de cobre.
  • La fibra óptica no transmite energía eléctrica, esto limita su aplicación donde el terminal de recepción debe ser energizado desde una línea eléctrica. La energía debe proveerse por conductores separados.
  • Las moléculas de hidrógeno pueden difundirse en las fibras de silicio y producir cambios en la atenuación. El agua corroe la superficie del vidrio y resulta ser el mecanismo más importante para el envejecimiento de la fibra óptica.
  • Incipiente normativa internacional sobre algunos aspectos referentes a los parámetros de los componentes, calidad de la transmisión y pruebas.

Kevin M Contreras H
CI 18.255.631
CRF
http://www.textoscientificos.com/redes/fibraoptica

Estándares

ESTANDAR ANSI/TIA/EIA-568-B.3-1: Aunque ya hace varios años que 10 GBE es soportado por fibra óptica, parece que sabemos muy poco al respecto, a pesar de que se cuenta con el estándar IEEE 802.3ae por el lado del equipamiento activo y con el estándar ANSI/TIA/EIA-568-B.3-1 por el lado de la infraestructura pasiva de telecomunicaciones. Conozcamos un poco acerca de ambos estándares.

ESTANDAR IEEE 802.3ae:
Publicado en el 2002, este estándar especifica 10 Gigabit Ethernet a través del uso de la Subcapa de Control de Acceso al Medio (MAC) IEEE 802.3, por medio de Acceso Múltiple con Detección de Portadora y Detección de Colisiones (CSMA/CD), conectada a través de una Interfaz Independiente del Medio Físico de 10 Gbps (XGMII) a una entidad de capa física tal como 10GBASE-SR, 10GBASE-LX4, 10GBASE-LR, 10G BASE-ER, 10GBASE-SW y 10GBASE-EW, permitiendo 10 Gbps hasta 40 km y garantizando una Tasa de Bits Errados (BER) de 10-12. Su operación es en modo full dúplex y se encuentra especificada para operar sobre fibra óptica.

10GBASE-R
es la implementación más común de 10GBE y utiliza el método de codificación 64B/66B, en el cual 8 octetos de datos se codifican en blocks de 66 bits, los cuales son transferidos en forma serial al medio físico a una velocidad de 10 Gbps. 10GBASE-W es una opción que, mediante el encapsulamiento de las tramas 10GBASE-R en tramas compatibles con SONET y SDH, permite la conexión a la WAN.

Por su parte, 10GBASE-LX4 utiliza el método de codificación 8B/10B, dividiendo las tramas de datos de 32 bits y 4 bits de control en 4 grupos de 10 bits que se transmiten en forma simultánea e independiente, cada uno a una velocidad de 2,5 Gbps, mediante Multiplexación por División de Largo de Onda (Wavelength-Division Multiplexed-Lane, WDM).

Las letras "S", "L" y "E" hacen referencia al largo de onda de operación

S=Short Wavelength – 850 nm

L=Long Wavelength

E=Extra Long Wavelength – 1550 nm).

Cabe destacar que en ninguno de estos casos se hace referencia a un tipo de fibra óptica específica.

ESTANDAR ANSI/TIA/EIA-568-B.3
Publicado en el 2000, el estándar ANSI/TIA/EIA-568-B.3 indica los requerimientos mínimos para componentes de fibra óptica utilizados en el cableado en ambientes de edificio, tales como cables, conectores, hardware de conexión, patch cords e instrumentos de prueba, y establece los tipos de fibra óptica reconocidos, los que pueden ser fibra óptica multimodo de 62.5/125 &µm y 50/125 &µm, y monomodo. Se especifica un ancho de banda de 160/500 MHz. Km para la fibra de 62.5/125 &µm y de 500/500 MHz. Km para la fibra de 50/125 &µm, y atenuación de 3.5/1.5 dB/Km para los largos de onda de 850/1300 nm en ambos casos respectivamente.

ANEXO ANSI/TIA/EIA-568-B.3-1:
Publicado en el 2002, este anexo entrega especificaciones adicionales para la fibra óptica de 50/125 &µm para proveer la capacidad de soportar transmisión serial a 10 Gbps mediante tecnología VCSEL a 850 nm hasta una distancia de 300 m, máxima distancia establecida por el estándar para el backbone interior. A este tipo de fibra se le conoce como fibra óptica optimizada para láser, o por la clasificación OM3.

La fibra de 50/125 &µm OM3 está especificada para un ancho de banda de 1500/500 MHz•Km y atenuación de 3.5/1.5 dB/Km @ 850/1300 nm. Cabe destacar que este ancho de banda corresponde al determinado mediante el Método de Medición de Ancho de Banda por Lanzamiento Saturado de Modos (Overfilled Launch Bandwidth – OFL), sin embargo, la forma correcta de medir el desempeño de una fibra de 50/125 &µm mejorada para Láser es a través del Método de Medición de Ancho de Banda Efectivo por Lanzamiento de Láser (Effective Laser Launch Bandwidth – EFL), mediante el cual la fibra se certifica para un ancho de banda efectivo de 2000/500 MHz•Km, extendiéndose así la máxima distancia alcanzable para la aplicación10GBE Finalmente, dependiendo de las distancias que se desee alcanzar será la aplicación que se deberá escoger. Por lo general, esta decisión se basa en el costo de la aplicación, la infraestructura de cableado disponible y las proyecciones de crecimiento y migración futuras.

Especificaciones sobre el cableado de fibra

Cada hilo de un cable de fibra óptica debe llevar la señal de un trasmisor (TX) en un extremo a un receptor (RX) en el otro. Cuando al tratar de conectar un equipo de fibra óptica determinamos que la polaridad está invertida, parece muy simple su corrección: cambiamos de posición los conectores y asunto arreglado.

La norma 568-B.13 desarrollada por la TIA 4, en las cláusulas 10.3.2 y 10.3.3 nos indica que cada segmento de cableado debe configurarse de tal modo que los hilos de fibra con número impar sean la posición A en una punta del cable y la posición B en la otra; y de manera inversa, los hilos con número par sean la posición B en una punta y A en la otra. Dicho de modo más simple, si miramos ambos extremos de un canal dúplex, un hilo lo veremos en un extremo del lado izquierdo (A) y en el otro del lado derecho (B); inversamente, el otro hilo lo veremos en el primer extremo del lado derecho (B) y en el otro del lado izquierdo (A).

Independientemente del número de hilos de fibra óptica, y de si poseen conectores simples o dúplex, se puede mantener la polaridad correcta por medio del método de posicionamiento de par invertido (reverse-pair positioning), especificado por la norma 568-B.1 y definido ampliamente en el boletín TSB1255.




Distribuidor de fibra óptica – ODF:
  • Elemento usado como punto de interconexión entre cable de fibra proveniente de la planta externa y equipos activos.
  • Suele ser una caja metálica que posee uno o varios puertos de ingreso de cables, y un área de patcheo con faceplates con adaptadores o transiciones, en la cual se conecta la terminación del cable de fibra por el un extremo y el patchcord hacia el equipo activo por el otro extremo.
  • Dentro del ODF se colocan las bandejas de empalme, en donde se albergan las fusiones de fibra.
  • Los ODF son de capacidades variables, y así mismo pueden tener varios tipos de adaptadores.
  • Es conveniente que los ODFs contengan un área de para las reservas de los patchcords y que sean de bandeja deslizable.
  • El patcheo en un ODF puede ser frontal o transversal.
  • ODF = Optical Distribution Frame
Bandejas de empalme:
  • Son bandejas cuya función es alojar a las fusiones de fibra.
  • Adicionalmente pueden contar con un área para reserva de pigtails y de los hilos de fibra.
  • Sus capacidades son variables.
  • Pueden tener la opción de ser cubiertas.


Kevin M Contreras H
CI 18.255.631
CRF
http://www.monografias.com/trabajos69/normas-fibra-optica/normas-fibra-optica2.shtml

Empalmes y Conexión

Para la instalación de sistemas de fibra óptica es necesario utilizar técnicas y dispositivos de interconexión como empalmes y conectores.

Los conectores son dispositivos mecánicos utilizados para recoger la mayor cantidad de luz. Realizan la conexión del emisor y receptor óptico.

En caso de que los núcleos no se empalmen perfecta y uniformemente, una parte de la luz que sale de un núcleo no incide en el otro núcleo y se pierde. Por tanto las perdidas que se introducen por esta causa pueden constituir un factor muy importante en el diseño de sistemas de transmisión, particularmente en enlaces de telecomunicaciones de gran distancia.


Los empalmes son las uniones fijas para lograr continuidad en la fibra.

En las fibras monomodo los problemas de empalme se encuentran principalmente en su pequeño diámetro del núcleo Dn = 10μm, esto exige contar con equipos y mecanismos de alineamiento de las fibras con una mayor precisión.

Las pérdidas de acoplamiento se presentan en las uniones de:

Emisor óptico a fibra, conexiones de fibra a fibra y conexiones de fibra a fotodetector.

Las pérdidas de unión son causadas frecuente­mente por una mala alineación lateral, mala alineación de separación, mala alineación angular, acabados de superficie imperfectos y diferencias ya sea entre núcleos o diferencia de índices, como los indicados en la figura.

Técnicas de empalme

Existen fundamentalmente 2 técnicas diferentes de empalme que se emplean para unir permanentemente entre sí fibras ópticas.

La primera es el empalme por fusión que actualmente se utiliza en gran escala, y la segunda el empalme mecánico.
Empalme por fusión

Se realiza fundiendo el núcleo, siguiendo las etapas de:
  • preparación y corte de los extremos
  • alineamiento de las fibras
  • soldadura por fusión
  • protección del empalme
Empalme mecánico

Este tipo de empalme se usa en el lugar de la instalación donde el desmontaje es frecuente, es importante que las caras del núcleo de la fibra óptica coincidan exactamente. Consta de un elemento de auto alineamiento y sujeción de las fibras y de un adhesivo adaptador de índice que fija los extremos de las fibras permanentemente.

Después de realizado el empalme de la fibra óptica se debe proteger con:
  • manguitos metálicos
  • manguitos termoretráctiles
  • manguitos plásticos.
En todos los casos para el sellado del manguito se utiliza adhesivo o resina de secado rápido.

Kevin M Contreras H
CI 18.255.631
CRF
http://www.textoscientificos.com/redes/fibraoptica/empalmes-conexiones

Proceso de Fabricación

Paso 01 : Fabricación del Preformado

La sección del preformado viene a ser una ampliación a escala de las dimensiones geométricas y del pérfil del índice de refracción del conductor de fibra óptica. Calentando un extremo de la preforma se estira hasta obtener el conductor de fibra final, aplicándose en simultaneo el revestimiento (coating) que hace las veces de cubierta protectora del conductor.

Tenemos los siguientes métodos conocidos :

1. Método por fusión de vidrio o Método directo A. Metodo de la varilla en tubo (rod in tube)

Este fue uno de los primeros métodos usados, en este proceso y es uno de los mas simple, se introduce una varilla de vidrio de alto índice como núcleo en un tubo que hace de recubrimiento y esta formado por vidrio de con un bajo índice de refracción. Las dimensiones de la varilla y del tubo son tales que prácticamente no queda espacio entre una y otro.



Una varilla de vidrio como núcleo se coloca dentro del tubo de vidrio del cladding. En el extremo de este ensamblado se aumenta la temperatura; y ambos vidrios son ablandados obteniendose una fibra por arrastre. .La varilla y el tubo son normalmente de 1 m. de longitud. La varilla del nucleo tiene típicamente 30 mm de diámetro. El vidrio del nucleo y el vidrio del cladding deben tener temperaturas de ablandamiento similares.

Este método es relativamente fácil: apenas se necesita comprar la varilla y el tubo. Sin embargo, uno debe tener mucho cuidado para no introducir impurezas entre el núcleo y el cladding.

La desventaja de este método simple consiste en que después del estirado de la fibra quedan pequeñísimos deterioros e impurezas en la superficie de separación entre ambos vidrios, lo que ocasiona elevadas atenuaciones del orden de los 500 a 1000 dB/Km. , por este método solo se fabrican fibra ópticas multimodos de perfil escalonado.
Estas fibras no son usadas en la transmisión de imagen e iluminación pero no son utilizadas en telecomunicaciones.

Metodo de los dos crisoles (double crucible o compound melting)
Este método se usa para evitar el inconveniente del metodo de la Varilla en tubo , los vidrios correspondiente al núcleo y al recubrimiento son unidos en estado de fusión y luego se estira la fibra de este material directamente al salir del estado de fusión y no se utiliza una preforma sólida.



Fig. Crisol doble El vidrio fundido del núcleo se coloca en el crisol interno. El vidrio fundido del cladding se coloca en el crisol exterior. Los dos vidrios se unen en la base exterior y la fibra se obtiene por arrastre. Pueden producirse Fibras de gran longitud Pueden obtenerse fibras de índice escalón y fibras de índice gradual con este método.

Se le denomina método de los dos crisoles ya que los vidrios usados para el núcleo y el cladding se funden en crisoles separados.
Este método permite obtener fibras de perfil gradual por difusión o intercambio de iones entre los vidrios del núcleo y del recubrimiento , a esto se le denomina Método Selfoc.
Ya que resulta difícil mantener una total limpieza de los crisoles las impurezas que llegan por este método se agregan al de los métales de transición ya existente e incrementan la atenuación que va de los 5 a los 20 dB/Km. A 850 nm. Este método es utilizado para la fabricación de fibras de gran diámetro ( mas de 200 um).

2. Fabricación de la preforma por técnica de deposición de vapor

La primera empresa que utilizo este método fué la empresa Corning en 1970, logrando disminuir dramáticamente la atenuación.
La deposición se puede efectuar por diferente formas: Sobre la superficie externa de una varilla de substrato en rotación (Método OVD, outside vapor deposition), sobre la superficie frontal de una varilla de cuarzo (Método VAD, vapor axial deposition) o sobre la superficie interior de un tubo de vidrio de cuarzo en rotación (Método IVD, inside vapor deposition), este último método puede utilizar la energia para la deposicion del vidrio ya sea desde afuera por medio de un quemador detonate de gas (Método MCVD, modified chemical vapor deposition) o desde adentro con una llama de plasma (Método PCVD, plasma activated chemical vapor deposition).

En todos estos métodos la deposición se produce por la descomposición de compuestos volátiles de alta pureza en un llama de gas detonante. Los Químicos usados son el Oxígeno (O2) y el tetracloruro de Silicio (SiCl4) que reaccionan para obtener sílice (SiO2).
El sílice puro se dopa con otros químicos tal como el óxido del boro (B2O3), el dióxido de germanio (GeO2) y el pentoxido de fósforo (P2O5) con el objeto de modificar el índice refractivo del vidrio.

A Método de Deposición de Vapor externo(OVD)

La fabricación de la preforma se efectua en dos etapas, en primer lugar se hace rotar con un dispositivo adecuado una varilla de substrato de vidrio de cuarzo AL2O3 o grafito en torno de su eje longitudinal, al tiempo que se calienta en una estrecha zona desde afuera con la llama de un quemador de gas detonante o gas propano.

Junto con las sustancias dopantes reqeridas por el pérfil de índices de refracción como los metales halogenados (SiCl4, GeCl4, BCl3, PCl3) se le suministra oxígeno (O2) al quemador, en el cual estos compuestos se convierten en los correspondientes óxidos. Estos a su vez se depositan sobre la varilla rotante en forma de finas partículas..
Al imprimirle un movimiento de vaiven en sentido longitudinal, se obtiene por capas una preforma porosa de vidrio. A cada una de estas capas se le puede dopar en forma diferente, agregando en determinada proporción distinta sustancias dopantes a la sustancia básica del SiO2, lograndose reducir los perfiles graduales, continuamente de la primera capa, el dopado con GeO2 con el cual se forma el núcleo hasta llegar al recubrimiento con una deposición de SiO2 puro. Para un perfil escalonado, se mantiene constante el dopado de cada capa.
Una vez obtenida la deposición de suficientes capas para el núcleo y el recubrimiento de la fibra; se retira la preforma cilíndrica de la varilla de substrato.

En la etapa final la preforma se calienta hasta su punto de fusión, con temperaturas entre 1400 y 1600 oC, la preforma se contraera convirtiendose en una varilla de vidrio firme y libre de burbujas, transparente cuyo hueco interior se ha cerrado. Durante el sintetizado de la preforma se lava esta con cloro gaseoso para quitar del vidrio todo vestigio de agua cuya presencia provocaría una elevada atenuación.



Fig. Los vapores químicos se oxidan en una llama en un proceso llamado hidrolisis.
La deposición se hace por fuera de una vara de sílice conforme la antorcha se mueve lateralmente.
Cuando la deposición está completa, la varilla es alejada y el tubo resultante se colapsa termicamente.


B Método VAD ó Deposición de Vapor axial (AVD)
La deposición de las partículas provenientes de un quemador de gas oxídrico tiene lugar sobre una cara frontal de una varilla rotante de vidrio de cuarzo.
La preforma porosa resultante se estira en sentido ascendente de tal forma que se mantiene constante la distancia entre el quemador y la preforma que va creciendo en sentido axial. Para fabricar el perfil de índices de refracción del núcleo y del recubrimiento se pueden utilizar varios quemadores simultánemente.
Es posible producir diferentes perfiles de índices de refracción, segun la construcción de los quemadores, su reparación y la temperatura durante la deposición. La contracción de la preforma se produce con la ayuda de un calefactor anular, a continuación de la deposición quedando la preforma transparente. Para secar la preforma, es decir eliminar la humedad residual, se hace circular cloro gaseoso en torno a la misma.



Fig.La deposición ocurre en el extremo de un sílice en rotación conforme los vapores químicos reaccionan para formar la sílica. El nucleo preformado y pueden hacerse fibras muy largas con esta técnica. Pueden fabricarse fibras del índice escalón y fibras del índice gradual de esta manera.

C Deposición de Vapor Químico modificado (MCVD)
Este método se realiza en dos etapas.
Primero : se hace rotar un tubo de vidrio puro alrededor de su eje longitudinal en un torno u otro dispositivo adecuado al tiempo que se calienta una estrecha zona del mismo desde afuera por medio de un quemador de gas detonante que se desplaza a lo largo del tubo.



Fig.En el método MCVD,ocurren un aserie de reacciones químicas que transforman una mezcla de gases en una varilla solida de vidrio llamdo Preforma.


A través del interior del tubo se hace pasar el oxígeno y los compúestos de halogenuros gaseosos (SiCl4, GeCl4, PCl3) requeridos para el respectivo dopado. Por este motivo los compuestos halogenos se descomponen en el interior del tubo y no en la llama del quemador, como ocurre en los métodos OVD y VAD.
Por esta causa se produce en la cara interior del tubo la deposición de numerosas y delgadas capas en un proceso llamado vitrificación, que se pueden dopar según el perfil del índices de refracción reqerido. El propio tubo constituye la sección externa del vidrio del recubrimiento y las capas que se depositan en su interior conforman la sección interna de la fibra es decir el núcleo.
Cada capa de vidrio se forma con la siguiente secuencia : a 16000 oC y dentro de la zona de calentamiento se forman particulas finas que se depositan sobre la cara interior del tubo. Al ser dezplazado el quemador en la dirección del flujo, las partículas se funden para formar una delgada y transparente capa del vidrio.
Una vez completada la deposición de las capas necesarias se pasa a la segunda etapa del método MCVD que consiste en calentar el tubo por secciones longitudinales hasta aproximadamente 2000 oC. De esta manera se produce el colapso del tubo para formar la varilla.
Ya que los gases que reaccionan en el interior del tubo se mantienen libres de hidrogeno, este método no requiere procesos especiales de secado, ya que el gas utilizado para el calentamiento que en general contiene una proporción de hidrógeno, solo actúa sobre el exterior del tubo, no teniendo influencia sobre el proceso ningún otro factor ambiental.



Fig.Los químicos son mezlados dentro de un tubo de vidrio que está rodando en un torno. Ellos reaccionan y las partículas sumamente finas de germanio o vidrio de silicio o de fosforo son depositados en la parte interna del tubo. Un quemador móvil que sigue al tubo: Causa una reacción que toma lugar y entonces enfoca el material depositado. La preforma es depositado capa por capa que empezando primero con la capa del cladding y es seguido por la capa del nucleo. Variando la mezcla de los químicos se cambia el índice refractivo del vidrio. Cuando la deposición está completa, el tubo se colapsa ha 2000 C dentro de una preforma de sílice de alta pureza con un nucleo de composición diferente. La Preforma es entonces colocado en un horno para el estirado.

D Deposición de Vapor Químico Modificado reforzado con plasma (PMCVD)

En este método las preformas se produce con el mismo procedimiento que en el caso del método MCVD. La diferencia radica en la técnica empleada para la reacción. Por medio de la excitación de un gas con ayuda de microondas, se obtiene un plasma. El gas que se ioniza, es decir se descompone en sus cargas eléctricas. Al reunificarse éstas, se libera calor que se utiliza par fundir materiales de elevado punto de fusión. Así en el proceso del plasma, se disocian los halogenos con ayuda de un plasma de baja presión y luego,con oxigeno, se forman SiO2. Las partículas formadas en este proceso se precipitan directamente a temperaturas del orden de los 1000 C, formando una capa de vidrio.
Dado que a la llama de plasma se le imprime un rápido movimiento de vaiven a lo largo del tubo, se pueden producir más de 1000 capas delgadas, lo cual permite incrementar la exactitud del perfil de índices de refracción



Fig.La Deposición de Vapor Química Modificada con reforzamiento de plasma es similar en principio de MCVD. La diferencia queda en el uso de un plasma en lugar de una antorcha.
El plasma es una región de gases ionizados eléctricamente calentados. Proporciona calor suficiente para aumentar la reacción química que está dentro del tubo y la velocidad de deposición.
Esta técnica puede usarse para fabricar fibras muy largas (50 km). Se usa para los dos tipos de fibra de índice escalon e índice gradual.


Paso 02 : Estirado de la Fibra y el Devanando en carrete

Estirado de la fibra
La punta de la preforma se calienta a aproximadamente 2000°C en un horno. Cuando el vidrio se ablanda, una cuerda delgada de vidrio ablandada cae ayudada por la gravedad y se enfria al caer.
Cuando la fibra es arrastrado su diámetro es constantemente supervisado
Una cubierta de plástico se aplica entonces a la fibra, antes de que toque cualquier componente. La capa protege la fibra del polvo y humedad. La fibra se envuelve al final del proceso alrededor de una bobina.

Durante el proceso del estirado, el diámetro de la fibra es controlado a 125 micras dentro de una tolerancia de 1 micra. El valor real del diámetro es comparado con los 125-micrometros, y las desviaciones se corrigen con cambios en la velocidad de arrastre. Si el diámetro de la fibra aumenta, la velocidad del estirado,se aumenta; si el diámetro de fibra empieza a disminuir, la velocidad se disminuye.

Una a dos-capa de proteccion se aplica entonces a la fibra--una capa interna suave y una capa exterior dura. Estas capas son tratadas por lámparas ultravioletas. El proceso de estirado es automatizado yno requiere virtualmente de ningún operador



Paso 03 : Pruebas y Mediciones

Luego del estirado la fibra pasa a la etapa de prueba y medidas en la cual se verifican todos los parámetros ópticos y geometricos. Existen tres tipos de pruebas : mecánico, óptico, y geometrico.
Primero: Se prueba la fuerza de tensión de la fibra. Cada bobina de fibra es arrastrado y se enrolla a través de una serie de cabrestantes y sujeta a cargas para asegurar que la fibra muestre una fuerza de tensión mínima de 100,000 lb/pg2 . La fibra se devana en carrete y se corta a longitudes especificas.
Segundo: La fibra óptica también se prueba para evitar defectos puntuales con un reflectometro óptico, el cual indicara cualquier anomalía a lo largo de la longitud de la fibra.
Una serie de parámetros ópticos dependen de la longitud de onda. Estos parámetros incluyen: la atenuación, y el ancho de banda, La apertura numérica, la dispersión cromática.

Tercero: las fibra multimodos y monomodos son probados en sus parámetros geometricos, incluye pruebas del diámetro del cladding, la no circularidad del cladding, cubierta del diámetro exterior, la no circularidad del diámetro exterior, error de concentricidad del cladding y del nucleo, y diámetro del nucleo.

La comprobación medioambiental y mecánica también se realiza periódicamente para asegurar que la fibra mantega su integridad óptica y mecánica. Estas pruebas incluyen la fuerza de tensióna y operación en rangos de temperatura, dependencia de la atenuación con la temperatura, dependencia de la temperatura y humedad, y su influencia en el envejeciendo.

Kevin M Contreras H
CI 18.255.631
CRF
http://orbita.starmedia.com/fortiz/Tema10.htm

Instalación

Zonas urbanas:
Zanjas
  • Uno de los métodos más caros que hay para instalar fibra óptica (unos 100 euros por metro).
  • Hay que levantar la vía pública durante un tiempo , pedir permiso de obra a los ayuntamientos y puede causar desperfectos a otros servicios (luz, agua, gas).
  • Suele ser una opción razonable cuando la zanja ya está abierta (por otro tipo de instalación).
  • Algunos ayuntamientos obligan a instalar fibra óptica o ductos cuando se abre una zanja.
Microzanjas:
  • El coste de la microzanja es hasta 1/3 del coste de una canalización óptica normal.
  • Actuación breve en la calzada (2 días).
  • Reducida ocupación de la calzada.
  • Escasa producción de escombros.
  • Alto rendimiento (500 m. diarios).
  • Baja penetración en el subsuelo (15 cm).
  • Se evita el riesgo de afectar a otros servicios (gas, agua, etc).
  • Profundidad suficiente para no ser afectado en las operaciones de mantenimiento fresado y reposición de asfalto. Alta resistencia al aplastamiento, curvatura y rotura. Hasta 100 Kg/cm.
Instalación
  • Trazado de trayectoria: Con ayuda del Georadar se evitan posibles obstáculos del subsuelo.

  • Corte: con una máquina de zanjado provista de una sierra circular de diamante se abre la microzanja con una anchura de entre 10 y 15 mm y una profundidad de entre 10 y 26 cm.

  • Limpieza: Mediante agua o aire comprimido.

  • Tendido de cables y ductos: Se utilizan cables headrow que soportan grandes presiones provocadas por la dilatación del asfalto.

  • Sellado con bitumen: Se sella la zanja con un material llamado bitumen (betún).

  • Instalación de arquetas: Entre 200 y 500 m en urbano o entre 500 y 2000 m en interurbano.
Campo a través
Se emplean 2 métodos:
  1. Zanjado : se emplea paralelo a la carretera.


  2. Arado: se emplea en campo sin obstáculos.

En ambos casos se coloca enterrada una cinta naranja que dice :
“ADVERTENCIA, DETENGA EXCAVACIÓN, CABLE ENTERRADO DE FIBRAS ÓPTICAS –NOMBRE DE LA EMPRESA-TELEFONO”

Gaseoductos
  • Las gasistas empiezan a instalar fibra para poder realizar el telecontrol de la red de transporte de gas.
  • Posteriormente fueron alquilando fibras a otros operadores.
  • En la actualidad hay compañías que ya operan como proveedores de telecomunicaciones.
  • Se aprovecha la gran inversión en seguridad del gaseoducto para la fibra.


Aérea

  • Sistema de cableado OPGW: sistema de cable compuesto tierra-óptico, para instalación en líneas eléctricas de alta tensión.
  • Sistema de cableado OPPC: sistema de cable compuesto fase-óptico, para líneas eléctricas de alta tensión, hasta 66 kV.
  • Sistema de cableado Autosoportado: sistema de cable óptico autosoportado para todo tipo de líneas: eléctricas, catenarias de ferrocarriles, etc.
  • Sistema de cableado Adosado: sistema de cable óptico adosado al cable de tierra o al cable de fase de las líneas eléctricas.



Submarina
Partes
Planta seca:
  • Equipo terminal de línea para transmitir y recibir la información
  • Equipo de generador de potencia para alimentar con corriente eléctrica a los repetidores
  • Cable terrestre para unir la estación de tierra con el Cable submarino
  • Cable de tierra que permite cerrar el circuito eléctrico a través del mar.
Planta húmeda:
  • Cable submarino
  • Repetidores que permiten amplificar y regenerar la señal luminosa
  • Unidades de derivación, que posibilitan integrar estaciones secundarias a la troncal


Instalación
  1. Estudio topográfico del fondo marino que permita elegir la ruta del cable más adecuada.
  2. Guardar el cable en el llamado barco cablero.

    • Barcos diseñados para instalar el cable
    • Gran precisión y una velocidad de 1km/h
    • 2 o 3 tanques y que puede almacenar 2000 km de cable cada uno
    • Esta operación de almacenar el cable tarde unas 3 semanas
    • Cada 50 km de cable se coloca un repetidor de media tonelada de peso
  3. Tendido en aguas someras.

    • Una embarcación de bajo calado lleva el cable desde el buque instalador hacia tierra con el uso de boyas que mantendrán flotando al cable 1 metro por debajo de la superficie del agua.
    • Las boyas son removidas por buzos de forma progresiva para posicionar al cable en el fondo.
    • Protección/enterrado del cable, enterrado usando una herramienta de presión de chorro
    • En condiciones de sedimentos suaves, o fijado con grapas en la roca.
  4. Instalación en aguas profundas
    • Los buzos no puede acceder al cable, por lo que es depositado en el fondo sin enterrar.
    • En ocasión se hace uso de un robot ROV (RemoteOperatedVehicles) para enterrarlo 1,5m
Seguridad
  • Tan solo en el Atlántico hay más de 400.000 kilómetros de cable donde se registran 50 roturas al año.
  • Las redes de arrastre y anclas son unas de las principales amenazas para el cable
  • Tras romperse el cable puede abandonarse si es antiguo o repararse usando ROVs.
  • La mayoría de las roturas solo afectan al ancho de banda de trasmisión entre continentes
  • Las roturas graves que incomunican o merman las comunicaciones de una zona solo ocurren 2 o 3 veces al año.
  • Demasiado kilómetros de cable para vigilar puede provocar sabotajes en zonas de conflicto
  • En 2008 se rompieron 5 cables en 13 días en oriente próximo afectando seriamente las comunicaciones entre Europa de Asia .
  • Para 2010 estará construido un cable que enlazará Chikura, en Japón, y Los Ángeles (California), con una longitud de 10.000 kilómetros, 203 millones de euros y una capacidad de 7,68 Tbps
Kevin M Contreras H
CI 18.255.631
CRF
http://arantxa.ii.uam.es/~aaguilar/ComOpt/PRESENTACIONES/Instalaciones.pdf

Aplicaciones

Su uso es muy variado: desde comunicaciones digitales, pasando por sensores y llegando a usos decorativos, como árboles de Navidad, veladores y otros elementos similares. Aplicaciones de la fibra monomodo: Cables submarinos, cables interurbanos, etc.

Comunicaciones con fibra óptica.

La fibra óptica se emplea como medio de transmisión para las redes de telecomunicaciones, ya que por su flexibilidad los conductores ópticos pueden agruparse formando cables. Las fibras usadas en este campo son de plástico o de vidrio, y algunas veces de los dos tipos. Para usos interurbanos son de vidrio, por la baja atenuación que tienen.

Para las comunicaciones se emplean fibras multimodo y monomodo, usando las multimodo para distancias cortas (hasta 5000 m) y las monomodo para acoplamientos de larga distancia. Debido a que las fibras monomodo son más sensibles a los empalmes, soldaduras y conectores, las fibras y los componentes de éstas son de mayor costo que los de las fibras multimodo.

Sensores de fibra óptica

Las fibras ópticas se pueden utilizar como sensores para medir la tensión, la temperatura, la presión y otros parámetros. El tamaño pequeño y el hecho de que por ellas no circula corriente eléctrica le da ciertas ventajas respecto al sensor eléctrico.

Las fibras ópticas se utilizan como hidrófonos para los sismos o aplicaciones de sónar. Se ha desarrollado sistemas hidrofónicos con más de 100 sensores usando la fibra óptica. Los hidrófonos son usados por la industria de petróleo así como las marinas de guerra de algunos países. La compañía alemana Sennheiser desarrolló un micrófono que trabajaba con un láser y las fibras ópticas.

Los sensores de fibra óptica para la temperatura y la presión se han desarrollado para pozos petrolíferos. Estos sensores pueden trabajar a mayores temperaturas que los sensores de semiconductores.

Otro uso de la fibra óptica como un sensor es el giroscopio óptico que usa el Boeing 767 y el uso en microsensores del hidrógeno.

Iluminación

Otro uso que le podemos dar a la fibra óptica es el de iluminar cualquier espacio. Debido a las ventajas que este tipo de iluminación representa en los últimos años ha empezado a ser muy utilizado.

Entre las ventajas de la iluminación por fibra podemos mencionar:
  • Ausencia de electricidad y calor: Esto se debe a que la fibra sólo tiene la capacidad de transmitir los haces de luz además de que la lámpara que ilumina la fibra no está en contacto directo con la misma.
  • Se puede cambiar de color la iluminación sin necesidad de cambiar la lámpara: Esto se debe a que la fibra puede transportar el haz de luz de cualquier color sin importar el color de la fibra.
  • Con una lámpara se puede hacer una iluminación más amplia por medio de fibra: Esto es debido a que con una lámpara se puede iluminar varias fibras y colocarlas en diferentes lugares.
Más usos de la fibra óptica
  • Se puede usar como una guía de onda en aplicaciones médicas o industriales en las que es necesario guiar un haz de luz hasta un blanco que no se encuentra en la línea de visión.
  • La fibra óptica se puede emplear como sensor para medir tensiones, temperatura, presión así como otros parámetros.
  • Es posible usar latiguillos de fibra junto con lentes para fabricar instrumentos de visualización largos y delgados llamados endoscopios. Los endoscopios se usan en medicina para visualizar objetos a través de un agujero pequeño. Los endoscopios industriales se usan para propósitos similares, como por ejemplo, para inspeccionar el interior de turbinas.
  • Las fibras ópticas se han empleado también para usos decorativos incluyendo iluminación, árboles de Navidad.
  • Líneas de abonado.
  • Las fibras ópticas son muy usadas en el campo de la iluminación. Para edificios donde la luz puede ser recogida en la azotea y ser llevada mediante fibra óptica a cualquier parte del edificio.
  • También es utilizada para trucar el sistema sensorial de los taxis provocando que el taxímetro (algunos le llaman cuentafichas) no marque el costo real del viaje.
  • Se emplea como componente en la confección del hormigón translúcido, invención creada por el arquitecto húngaro Ron Losonczi, que consiste en una mezcla de hormigón y fibra óptica formando un nuevo material que ofrece la resistencia del hormigón pero adicionalmente, presenta la particularidad de dejar traspasar la luz de par en par.

Iluminación con fibra óptica lateral en barra de bar y efecto decorativo en el techo.


Kevin M Contreras H
CI 18.255.631
CRF
http://wapedia.mobi/es/Fibra_%C3%B3ptica?t=3.#3.
http://www.metrolight-es.com/fibra-optica-usos.htm

Historia

El uso de la luz para la codificación de señales no es nuevo, los antiguos griegos usaban espejos para transmitir información, de modo rudimentario, usando luz solar. En 1792, Claude Chappe diseñó un sistema de telegrafía óptica, que mediante el uso de un código y torres y espejos distribuidos a lo largo de los 200 km que separan Lille y París, conseguía transmitir un mensaje en tan sólo 16 minutos.

La gran novedad aportada en nuestra época es el haber conseguido “domar” la luz, de modo que sea posible que se propague dentro de un cable tendido por el hombre. El uso de la luz guiada, de modo que no expanda en todas direcciones, sino en una muy concreta y predefinida se ha conseguido mediante la fibra óptica, que podemos pensar como un conducto de vidrio -fibra de vidrio ultra delgada- protegida por un material aislante que, sirve para transportar la señal lumínica de un punto a otro.

Además tiene muchas otras ventajas, como bajas pérdidas de señal, tamaño y peso reducido, inmunidad frente a emisiones electromagnéticas y de radiofrecuencia y seguridad. Todos estos apartados se describirán a continuación, abriéndonos las puertas al descubrimiento de un nuevo mundo: el mundo de la información sin límite de ancho de banda

Como resultado de estudios en física enfocados de la óptica, se descubrió un nuevo modo de empleo para la luz llamado rayo láser. Este último es usado con mayor vigor en el área de las telecomunicaciones, debido a lo factible que es enviar mensajes con altas velocidades y con una amplia cobertura. Sin embargo, no existía un conducto para hacer viajar los fotones originados por el láser.

La posibilidad de controlar un rayo de luz, dirigiéndolo en una trayectoria recta, se conoce desde hace mucho tiempo. En 1820, Augustin-Jean Fresnel ya conocía las ecuaciones por las que rige la captura de la luz dentro de una placa de cristal lisa. Su ampliación a lo que entonces se conocía como cables de vidrio fue obra de D. Hondros y Peter Debye en 1910. El físico irlandés John Tyndall descubrió que la luz podía viajar dentro de un material (agua), curvándose por reflexión interna, y en 1870 presentó sus estudios ante los miembros de la Real Sociedad. A partir de este principio se llevaron a cabo una serie de estudios, en los que demostraron el potencial del cristal como medio eficaz de transmisión a larga distancia. Además, se desarrollaron una serie de aplicaciones basadas en dicho principio para iluminar corrientes del agua en fuentes públicas. Más tarde, J.L Baird registró patentes que describían la utilización de bastones sólidos de vidrio en la trasmisión de luz, para su empleo en un primitivo sistema de televisión de colores. El gran problema, sin embargo, es que las técnicas y los materiales usados no permitían la trasmisión de luz con buen rendimiento. Las pérdidas eran tan grandes y no había dispositivos de acoplamiento óptico.

Solamente en 1950 las fibras ópticas comenzaron a interesar a los investigadores, con muchas aplicaciones prácticas que estaban siendo desarrolladas. En 1952, el físico Narinder Singh Kapany, apoyándose en los estudios de John Tyndall, realizó experimentos que condujeron a la invención de la fibra óptica.

Uno de los primeros usos de la fibra óptica fue emplear un haz de fibras para la transmisión de imágenes, que se usó en el endoscopio médico. Usando la fibra óptica, se consiguió un endoscopio semiflexible, el cual fue patentado por la Universidad de Michigan en 1956. En este invento se usaron unas nuevas fibras forradas con un material de bajo índice de refracción, ya que antes se impregnaban con aceites o ceras. En esta misma época, se empezaron a utilizar filamentos delgados como el pelo que transportaban luz a distancias cortas, tanto en la industria como en la medicina, de forma que la luz podía llegar a lugares que de otra forma serían inaccesibles. El único problema era que esta luz perdía hasta el 99% de su intensidad al atravesar distancias de hasta de 9 metros de fibra.

Charles K. Kao, en su tesis doctoral de 1956, estimó que las máximas pérdidas que debería tener la fibra óptica, para que resultara práctica en enlaces de comunicaciones, eran de 20 dB/km.

En 1966, en un comunicado dirigido a la Asociación Británica para el avance de la ciencia , los investigadores Charles K. Kao y G. A Hockham, de los laboratorios de Standar Telecommunications, en Inglaterra, afirmaron que se podía disponer de fibras de una transparencia mayor y propusieron el uso de fibras de vidrio y luz, en lugar de electricidad y conductores metálicos, en la trasmisión de mensajes telefónicos. La obtención de tales fibras exigió grandes esfuerzos de los investigadores, ya que las fibras hasta entonces presentaban pérdidas de orden de 100 dB por kilómetro, además de una banda pasante estrecha y una enorme fragilidad mecánica. Este estudio constituyó la base para mejorar las pérdidas de las señales ópticas que hasta el momento eran muy significativas y no permitían el aprovechamiento de esta tecnología. En un artículo teórico, demostraron que las grandes pérdidas características de las fibras existentes se debían a impurezas diminutas intrínsecas del cristal. Mientras tanto, como resultado de los esfuerzos, se hicieron nuevas fibras con atenuación de 20 dB por kilómetro y una banda pasante de 1 GHz para un largo de 1 km, con la perspectiva de sustituir los cables coaxiales. La utilización de fibras de 100 µm de diámetro, envueltas en nylon resistente, permitirían la construcción de hilos tan fuertes que no podían romperse con las manos. Hoy ya existen fibras ópticas con atenuaciones tan pequeñas de hasta 1 dB por kilómetro, lo que es muchísimo menor a las pérdidas de un cable coaxial.

El artículo de Kao-Hockman estimuló a algunos investigadores a producir dichas fibras con bajas pérdidas. El gran avance se produjo en 1970, cuando los investigadores Maurer, Keck, Schultz y Zimar que trabajaban para Corning Glass, fabricaron la primera fibra óptica aplicando impurezas de titanio en sílice, con cientos de metros de largo con la claridad cristalina que Kao y Hockman habían propuesto. Las pérdidas eran de 17 dB/km. Durante esta década las técnicas de fabricación se mejoraron, consiguiendo pérdidas de tan solo 0,5 dB/km.

Poco después, Panish y Hayashi, de los laboratorios Bell, mostraron un láser de semiconductores que podía funcionar continuamente a temperatura ambiente. En 1978 ya se transmitía a 10 Gb km/segundos. Además, John MacChesney y sus colaboradores, también de los laboratorios Bell, desarrollaron independientemente métodos de preparación de fibras. Todas estas actividades marcaron un punto decisivo ya que ahora, existían los medios para llevar las comunicaciones de fibra óptica fuera de los laboratorios, al campo de la ingeniería habitual. Durante la siguientes década, a medida que continuaban las investigaciones, las fibras ópticas mejoraron constantemente su transparencia.

El 22 de abril de 1977, General Telephone and Electronics envió la primera transmisión telefónica a través de fibra óptica, en 6 Mbit/s, en Long Beach, California.

El amplificador que marcó un antes y un después en el uso de la fibra óptica en conexiones interurbanas, reduciendo el coste de ellas, fue el amplificador óptico inventado por David Payne, de la Universidad de Southampton, y por Emmanuel Desurvire en los Laboraatorios Bell. A ambos se les concedió la medalla Benjamin Franklin en 1988.

Hoy en día, debido a sus mínimas pérdidas de señal y a sus óptimas propiedades de ancho de banda, la fibra óptica puede ser usada a distancias más largas que el cable de cobre. Además, la fibra por su peso y tamaño reducido, hace que sea muy útil en entornos donde el cable de cobre sería impracticable.

Kevin M Contreras H
CI 18.255.631
CRF
http://wapedia.mobi/es/Fibra_%C3%B3ptica?t=3.#3.


Conversión eléctrica – óptica

Para transmitir información mediante señales luminosas a través de un conductor (fibra óptica) se requiere que en el punto emisor y receptor existan elementos para convertir las señales eléctricas en ópticas y viceversa.

En el extremo emisor la intensidad de una fuente luminosa se modula mediante una señal eléctrica y en el extremo receptor, la señal óptica se convierte en una señal eléctrica.

Para este proceso de conversión se utilizan las propiedades de los materiales semiconductores los cuales poseen dos bandas de energía, banda de valencia (nivel bajo de energía) y banda de conducción (nivel alto de energía) separadas por una distancia de energía.

Un fotón (quantum de energía) tiene una energía


En el semiconductor para pasar un electrón de la banda de valencia a la banda de conducción, existe energía absorbida por incidencia de un fotón. Proceso inverso se realiza para liberar fotones.

E=EC - EV

Donde:

EC energía de un electrón, cuando se encuentra en la banda de conducción

EV energía de un electrón, cuando se encuentra en la banda de valencia

E es una característica del material y se puede cambiar en función al contaminante empleado en el semiconductor.

Cuando se libera un fotón se lo puede hacer de dos maneras: espontánea o estimulada. En la emisión espontánea no existe ningún medio externo que induzca al electrón pasar de la banda de conducción a la banda de valencia. En la emisión estimulada un fotón induce a que el electrón pase a su estado de reposo, liberando un fotón, en cuyo caso se dice que existe amplificación, si además existe retroalimentación y un elemento de selectividad, se logrará tener emisiones coherentes (mediante espejos). Una representación de estos procesos se indica en la figura que se encuentra a continuación.

Kevin M Contreras H
CI 18.255.631
CRF

http://www.textoscientificos.com/redes/fibraoptica/conversion

Tipos de Fibras ópticas

Cable de fibra por su composición hay tres tipos disponibles actualmente:
  • Núcleo de plástico y cubierta plástica
  • Núcleo de vidrio con cubierta de plástico (frecuentemente llamada fibra PCS, El núcleo silicio cu bierta de plástico)
  • Núcleo de vidrio y cubierta de vidrio (frecuentemente llamadas SCS, silicio cubierta de silicio)

Las fibras de plástico tienen ventajas sobre las fibras de vidrio por ser más flexibles y más fuertes, fáciles de instalar, pueden resistir mejor la presión, son menos costosas y pesan aproximadamente 60% menos que el vidrio. La desventaja es su característica de atenuación alta: no propagan la luz tan eficientemente como el vidrio. Por tanto las de plástico se limitan a distancias relativamente cor­tas, como puede ser dentro de un solo edificio.

Las fibras con núcleos de vidrio tienen baja atenuación. Sin embargo, las fibras PCS son un poco mejores que las fibras SCS. Además, las fibras PCS son menos afectadas por la radiación y, por lo tanto, más atractivas a las apli­caciones militares. Desafortunadamente, los cables SCS son menos fuertes, y más sensibles al aumento en atenuación cuando se exponen a la radiación.

Cable de fibra óptica disponible en construcciones básicas:

  • Cable de estructura holgada y
  • Cable de estructura ajustada.

Cable de estructura holgada

Consta de varios tubos de fibra rodeando un miembro central de refuerzo, y rodeado de una cubierta protectora. El rasgo distintivo de este tipo de cable son los tubos de fibra. Cada tubo, de dos a tres milímetros de diámetro, lleva varias fibras ópticas que descansan holgadamente en él. Los tubos pueden ser huecos o, más comúnmente estar llenos de un gel resistente al agua que impide que ésta entre en la fibra. El tubo holgado aísla la fibra de las fuerzas mecánicas exteriores que se ejerzan sobre el cable.


El centro del cable contiene un elemento de refuerzo, que puede ser acero, Kevlar o un material similar. Este miembro proporciona al cable refuerzo y soporte durante las operaciones de tendido, así corno en las posiciones de instalación permanente. Debería amarrarse siempre con seguridad a la polea de tendido durante las ope­raciones de tendido del cable, y a los anclajes apropiados que hay en cajas de empal­mes o paneles de conexión.

La cubierta o protección exterior del cable se puede hacer , entre otros materiales, de pol ietileno, de armadura o coraz a de acero, goma o hilo de aram ida, y para apli­caciones tanto exteriores com o interiores. Con objeto d e l ocalizar los fallos con e l OTDR d e un a manera más fácil y precisa, la cubierta está secuenc ialm e nt e numerada cada metro (o cada pie) por el fabricante.

Los cables de estructura holgada se usan en la mayoría de las instalaciones exte­riores, incluyendo aplicaciones aéreas, en tubos o conductos y en instalaciones direc­tamente enterradas. El cable de estructura holgada no es muy adecuado para instalaciones en recorridos muy verticales, porque existe la posibilidad de que el gel interno fluya o que las fibras se muevan.

Cable de estructura ajustada

Contiene varias fibras con protección secundaria que rodean un miembro central de tracción, y todo ello cubierto dc una protección exterior. La protección secundaria de la fibra consiste en una cubierta plástica de 900 μm de diámetro que rodea a! recubrimiento de 250 μm de la fibra óptica.

Existen también otros cables de fibra óptica para las siguientes aplicaciones especiales:

Cable aéreo autoportante: es un cable de estructura holgada diseñado para ser utilizado en estructuras aéreas. No requiere un fijador corno soporte. Para asegurar el cable directamente a la estructura del poste se utilizan abrazaderas espe­ciales. El cable se sitúa bajo tensión mecánica a lo largo del tendido.

Cable submarino: Es un cable de estructura holgada diseñado para permanecer sumergido en el agua. Actualmente muchos continentes están conectados por cables submarinos de fibra óptica transoceánicos.

Cable compuesto tierra-óptico (OPGW): Es un cable de tierra que tiene fibras ópticas insertadas dentro de un tubo en el núcleo central del cable. Las fibras ópticas están com­pletamente protegidas y rodeadas por pesados cables a tierra. Es utilizado por las compañías eléctricas para suministrar comunicaciones a lo largo de las rutas de las líneas de alta tensión.

Cables híbridos: Es un cable que contiene tanto fibras ópticas como pares de cobre.

Cable en abanico: Es un cable de estructura ajustada con un número pequeño de fibras y diseñado para una conexión directa y fácil (no se requiere un panel de conexiones).

Kevin M Contreras H
CI 18.255.631
CRF

http://www.textoscientificos.com/redes/fibraoptica/tiposfibra